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Negative electrostatic contribution to the bending rigidity of charged membranes
and polyelectrolytes screened by multivalent counterions

T. T. Nguyen, I. Rouzina, and B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, 116 Church Street Southeast, Minneapolis, Minnesota 55455

~Received 26 April 1999!

Bending rigidity of a charged membrane or polyelectrolyte screened by monovalent counterions is known to
be enhanced by electrostatic effects. We show that in the case of screening by multivalent counterions the
electrostatic effects reduce the bending rigidity. This inversion of the sign of the electrostatic contribution is
related to the formation of two-dimensional strongly correlated liquids~SCL! of counterions at the charged
surface due to strong lateral repulsion between them. When a membrane or a polyelectrolyte is bent, SCL is
compressed on one side and stretched on the other so that thermodynamic properties of SCL contribute to the
bending rigidity. Thermodynamic properties of SCL are similar to those of Wigner crystal and are anomalous
in the sense that the pressure, compressibility and screening radius of SCL are negative. This brings about
substantial negative correction to the bending rigidity. For the case of DNA this effect qualitatively agrees with
experiment.@S1063-651X~99!16011-2#

PACS number~s!: 77.84.Jd, 61.20.Qg, 61.25.Hq
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I. INTRODUCTION

Many polymers and membranes are strongly charged
water solution. Among them are biopolymers such as li
membranes, DNA, actin, and other proteins as well as
merous synthetic polyelectrolytes. In this paper, we conc
trate on bending of membranes and cylindrical polyelec
lytes with fixed uniform distribution of charge at the
surfaces. For a flat symmetrical membrane, the curvature
energy per unit area can be expressed in terms of the cu
turesc1 andc2 along two orthogonal axes as@1#

dF

S
5

1

2
k~c11c2!21kGc1c2 , ~1!

wherek is the bending rigidity,kG is the Gaussian rigidity,
and S is the membrane surface area. For cylindrical a
spherical deformations with the radius of curvatureRc ~see
Fig. 1!,

dFcyl

S
5

1

2
kRc

22 , ~2!

dFsph

S
5~2k1kG!Rc

22 , ~3!

respectively. In general,k5k01kel , where k0 is the
‘‘bare’’ bending rigidity related to short range forces andkel
is electrostatic contribution which is determined by the m
nitude of surface charge density and the condition of
screening by small ions of the water solution. Similarly, fo
rodlike polymer, such as double helix DNA, the change
free energy per unit length due to bending is given by

dF

L 5
1

2
QRc

22 , ~4!

whereL is the length of the rod,Q5Q01Qel is the bending
constant of the rod, which consists of a ‘‘bare’’ compone
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Q0, and an electrostatic contributionQel . In the worm model
of a linear polymer, the persistence length,L, of the polymer
is related toQ,

L5
Q

kBT
5

Q0

kBT
1

Qel

kBT
5L01Lel , ~5!

whereL0 is the bare persistent length andLel is an electro-
static contribution to it. In the absence of screening, rep
sion of like charges of a membrane or a polyelectrolyte le
to infinite kel and Lel . Only screening makes them finite
When the surface charge density is small enough Deb
Hückel ~DH! approximation can be used. For a membra

FIG. 1. Bending of membrane~the curvature has been exagge
ated!. For simplicity, the WC case is depicted.~a! A thick mem-
brane. The right WC is compressed, while the left WC is stretch
For thick membranes, this is the dominant cause of the chang
free energy.~b! A very thin membrane. Only one Wigner-Seitz ce
is shown. Due to finite curvature of the surface, the distance fr
any point of the Wigner-Seitz cell to the central ion is shorter th
that in the flat configuration. For thin membranes, this is the do
nant cause of free energy change.
7032 © 1999 The American Physical Society
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with the surface charge density2s on each side,kel was
calculated@2–5# when DH screening lengthr s is larger than
membrane thicknessh:

kDH53p
s2r s

3

D
, kG,DH52

2

3
kDH ~h!r s!. ~6!

HereD is dielectric constant of water.
For cylindrical polyelectrolyte with diameterd much

smaller thanr s , calculations in the DH limit lead to the we
known Odijk-Skolnick-Fixman formula@6# for the persis-
tence length,

LDH5
h2r s

2

4DkBT
~d!r s!, ~7!

where2h5psd is the charge per unit length of the poly
mer. Equations~6! and~7! show that, in DH approximation
kel andLel vanish atr s50 so that one can measurek0 and
L0 in the limit of high concentration of monovalent salt. A
r s.0, the quantitieskel and Lel are always positive and
grow with r s . However, in many practical situations, poly
electrolytes are so strongly charged that DH approxima
does not work and the nonlinear Poisson-Boltzmann~PB!
equation was used to calculatekel and Lel . If counterions
have chargeZe, the PB equation gives, for a thin membra
@3#,

kPB5
kBTrs

p l
, kG,PB52

p2

3
kPB ~h!r s! ~8!

and for the thin rod@7#

LPB5
r s

2

4l
~d!r s!, ~9!

where l 5Z2e2/DkBT is the Bjerrum length with chargeZ.
Equations~6!–~9! give positive kel and Lel in agreement
with the common expectations that electrostatic effects
only increase bending rigidity.

This paper deals with the case of a strongly charged m
brane or polyelectrolyte with a uniform distribution of im
mobile charge on its surface. It was shown in Refs.@8–14#
that screening of such surface by multivalent counteri
with chargeZ>2 cannot be described by the PB equatio
Due to strong lateral Coulomb repulsion, counterions c
densed on the surface form strongly correlated tw
dimensional liquid~SCL!. Their correlations are so stron
that a simple picture of the two-dimensional Wigner crys
~WC! of counterions on a background of uniform surfa
charge is a good approximation for calculation of the fr
energy of the SCL. The concept of SCL was used to dem
strate that two charged surfaces in the presence of mul
lent counterions attract each other at small distan
@10,13,14#. It was also shown that cohesive energy of SC
leads to much stronger counterion attraction to the surf
than in conventional solutions of the Poisson-Boltzma
equation, so that surface charge is almost totally comp
sated by the SCL@14#.

In this paper we calculate effect of SCL at the surface
a membrane or a polyelectrolyte on its bending rigidi
n

n

-

s
.
-
-

l

e
n-
a-
s

e
n
n-

f
.

When a membrane or polyelectrolyte is bent, the density
its SCL follows the changes in the density of the surfa
charge, increasing on one side and decreasing on the o
site side~see Fig. 1!. As a result the bending rigidities can b
expressed through thermodynamic properties of the S
namely, two-dimensional pressure and compressibility.
two-dimensional one component plasma~on uniform back-
ground! these quantities were found by Monte Carlo simu
tion and other numerical methods@15–17# as functions of
temperature. The inverse dimensionless temperature of
is usually written as the ratio of the average Coulomb int
action between ions to the thermal kinetic energykBT,

G5
~pn!1/2Z2e2

DkBT
, ~10!

wheren5s/Ze is concentration of SCL~e.g., forZ53 and
s51.0 e/nm22, G56.3). We will show that in the range o
our interest 3,G,15 the free energy, the pressure the co
pressibility, and, therefore, electrostatic bending rigidit
differ only by 20% from those in the low temperature lim
G→`, where SCL freezes into the WC. This difference
due to the effects of finite temperature, in particular due
long-wavelength phonons and higher anharmonic corr
tions. All these effects are taken into account in Secs. III a
IV, where general results for the bending rigidity of mem
branes@Eqs. ~32! and ~33!# and polyelectrolytes@Eq. ~39!#
are given. Now we present only very simple results obtain
in the WC limit,

kWC520.68
s2

D
h2a520.74

s3/2~Ze!1/2h2

D
,

kG,WC52
2

3
kWC , ~11!

LWC520.054
h2

DkBT
da520.10

h3/2~Ze!1/2d3/2

DkBT
. ~12!

Herea5(2Ze/A3s)1/2 is the lattice constant of the triangu
lar close packed WC. The membrane and the cylinder
assumed to be reasonably thick, 2ph@a andpd@a. In con-
trast with results for DH and PB approximations,kWC and
LWC are negative, so that multivalent counterions make
membrane or a polyelectrolyte more flexible. For a me
brane withs51.0 e/nm22, h54 nm atZ53 we find that
a51.7 nm, inequality 2ph@a is fulfilled and Eq. ~11!
yields kWC5214kBT ~at room temperature!. This value
should be compared with typicalk0;202100kBT. For a
cylindrical polyelectrolyte with parameters of the double h
lix DNA, d52 nm andh55.9 e/nm, inequalitypd@a is
valid and we obtainLWC524.9 nm, which is much smalle
than the bare persistence lengthL0550 nm. We should,
however, note that our estimates are based on the use o
bulk dielectric constant of waterD580. For the lateral in-
teractions of counterions near the surface of organic mate
with low dielectric constant, the effectiveD can be substan
tially smaller.~In macroscopic approach, it is close toD/2.!
As a result, absolute values ofkWC andLWC can grow sig-
nificantly.
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Negative electrostatic contributions to the bending rigid
were also predicted in two recent papers@18,19#. The authors
considered this problem in the high temperature limit wh
attraction between different points of a membrane or a po
electrolyte is a result of correlations of thermal fluctuatio
of screening atmosphere at these points. Such theories
scribe negative contribution to rigidity forZ51 or for larger
Z but with weakly charged surfaces whereG,1. On the
other hand, atZ>3 and larges, one deals with low tem-
perature situation whenG@1. In this case the main terms o
the electrostatic contribution to the bending rigidity are giv
by Eqs.~11! and~12!, which are based onstatic spatial cor-
relations of ions. As we mentioned above, atG@1, the in-
clusion of all the dynamic terms result in less than 20
corrections to Eqs.~11! and ~12!.

We would like to emphasize that, contrary to Ref.@19#,
this paper deals only with small deformations of a membr
or a polyelectrolyte. We are not talking about a global ins
bility of a membrane or polyelectrolyte due to self-attractio
where, for example, a membrane rolls itself into a cylinder
a polyelectrolyte, as in the case of DNA, rolls into a toroid
particle@10#. Global instabilities can happen even when to
local bending rigidities are still positive. To prevent the
instabilities in experiment one can work with a small ar
membrane or short polyelectrolyte@20# or keep their total
bend small by an external force, for example, with opti
tweezers@21,22#.

It is known that, in a monovalent salt, DNA has a pers
tence lengthL.50 nm that saturates at 50 nm at large co
centration of salt. Thus, it is natural to assume that the b
persistence lengthL0550 nm. However, it was found in
Refs.@20–22# that a relatively small concentration of cou
terions with Z52,3,4 leads to an even smaller persisten
length, which can be as low asL525230 nm. We empha-
size that a strong effect was observed for multivalent co
terions which are known to bind to DNA due to the nonsp
cific electrostatic force.

These experimental data can be interpreted as a resu
replacement of monovalent counterions with multivale
ones that create SCL at the DNA surface. As we stated
fore, multivalent counterions should produce a negative c
rection to L0, although the above calculated correction
persistence length is smaller than the experimental one.

This paper is organized as follows. In Sec. II we discu
thermodynamic properties of SCL and WC as functions of
density and temperature. In Secs. III and IV we use exp
sions for their pressure and compressibility to calculatekSCL
andLSCL and their asymptotic expressionskWC andLWC . In
Sec. V we calculate contributions of the tail of screeni
atmosphere tokel and Lel and show that forZ>2 and
strongly charged membranes and polyelectrolytes, tail c
tributions to the bending rigidity are small in comparis
with that of SCL.

II. STRONGLY CORRELATED LIQUID AND WIGNER
CRYSTAL

Let us consider a flat surface uniformly charged with s
face density2s and covered by concentrationn5s/Ze of
counterions with chargeZe. It is well known that the mini-
mum of Coulomb energy of counterion repulsion and th
e
-
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attraction to the background is provided by a triangular clo
packed WC of counterions. Let us write energy per unit s
face area of WC asE5n«(n), where«(n) is the energy per
ion. One can estimate«(n) as the interaction energy of a
ion with its Wigner-Seitz cell of background charge~a hexa-
gon of the background with charge2Ze). This estimate
gives «(n);2Z2e2/Da;2Z2e2n1/2/D. A more accurate
expression for«(n) is @23#

«~n!52an1/2Z2e2D21521.1GkBT, ~13!

wherea51.96. At room temperature, Eq.~13! can be rewrit-
ten as

«~n!.21.4 Z3/2~s/e!1/2kBT, ~14!

wheres/e is measured in units of nm22.
At s51.0 e/nm22, Eq. ~14! gives u«(n)u.7kBT or G

56.3 atZ53, andu«(n)u.13kBT or G512 atZ54. Thus,
for multivalent ions at room temperature we are dealing w
the low temperature regime. However, it is known@17# that
due to a very small shear modulus, WC melts at even lo
temperature:G.130. Nevertheless, the disappearance
long range order produces only a small effect on thermo
namic properties. They are determined by the short ra
order, which does not change significantly in the range of
interest 5,G,15 @10,11,13,14#. This can be seen from nu
merical calculations@15–17# of thermodynamic properties o
classical two-dimensional SCL of Coulomb particles on t
neutralizing background. In the range 0.5,G,50, the inter-
nal energy of SCL per counterion,«(n,T), was fitted by

«~n,T!5kBT~21.1G10.58G1/410.74!, ~15!

with an error of less than 2%@15#. The first term on the
right-hand side of Eq.~15! is identical to Eq.~13! and domi-
nates at largeG. All other thermodynamic functions can b
obtained from Eq.~15!. In the next section we show thatkel
andLel are proportional to the inverse isothermal compre
ibility of SCL at a given number of ionsN,

x215n~]P/]n!T , ~16!

where

P52~]F/]S!T5@n«~n,T!1nkBT#/2

5nkBT~20.55G10.27G1/410.87! ~17!

is the two-dimensional pressure,F is the free energy of SCL
and S5N/n is its area. Using Eq.~17! and relation]G/]n
5G/2n, one finds

x215nkBT~20.83G10.33G1/410.87!, ~18!

where the first term on the right-hand side follows from E
~13! and describes the WC limit. The last two terms descr
finite temperature effects, in particular the contributions
phonons and anharmonic terms; they give a 33% correc
to the WC term atG55 and only a 12% correction atG
515. So one can use zero temperature, Eq.~13!, as first
approximation to calculatekel andLel . This is how we ob-
tained Eqs.~11! and ~12!.
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Equations~17! and ~18! show that, in contrast with mos
of liquids and solids, SCL and WC havenegativepressureP
and compressibilityx. We will see below that anomalou
behavior is the reason for anomalousnegativerigidity kel
and persistence lengthLel and positive Gaussian rigidity
kG,el . The curious negative sign of compressibility of tw
dimensional electron SCL and WC was first predicted in R
@24#. Later it was discovered in magnetocapacitance exp
ments in metal-oxide-semiconductor field-effect transist
and semiconductor heterojunctions@25,26#.

According to Eq.~18! x2150 at G51.48, P50 at G
52.18 and they become positive at smallerG. As one can
see from Eqs.~14! and ~10!, at s;1.0 e/nm22 such small
values ofG correspond toZ51. Thus, the surface layer o
monovalent ions does not produce large negativekel andLel
in comparison with multivalent ions. For them, the conve
tional results of Eqs.~6!–~9! related to counterions in th
long distance tail of screening atmosphere work better.
will return to this question in Sec. V where we discuss t
role of these tails.

Before ending this section, we would like to mention th
Eq. ~15! for the internal energy was obtained by Monte Ca
simulations of a flat two-dimensional system with a lar
number of particles. In reality, a membrane or a polyelec
lyte are flat only on the local scale. The accuracy of o
approach is proportional to the ratio of the Wigner-Seitz c
size to the size of the local flat area. Depending on spec
membranes and polyelectrolytes, this correction may v
from a fraction of one percent to 10–20 %. A Monte Ca
simulation to investigate the finite size effect would be d
sirable.

III. MEMBRANE

We will consider a ‘‘thick’’ membrane for which one ca
neglect the effects of the correlation of SCL on two surfa
of the membrane. If we approximate SCL by WC, the ene
of such correlations between two surfaces of the membr
decay as exp(22ph/a), so the condition of ‘‘thickness,’’h
@2pa, is actually easily satisfied for a strongly charg
membrane.

Let us first write the free energy of each surface of
membrane as

F5N f~n,T!, ~19!

where f (n,T) is the free energy per ion.
When a membrane is bent@see Fig. 1~a!#, the surface

charge on the right side is compressed to a new densitynR
.n, while the surface charge on the left-hand side
stretched tonL,n. Since the total charge on each surface
conserved, this change in density leads to a change in
free energy of each surface,

dFL,R5NS ] f

]n
dnL,R1

1

2

]2f

]n2
dnL,R

2 D , ~20!

in which we kept only terms up to second order indnL,R
5nL,R2n.

Using the definitions~17! and ~16! for the pressure and
the compressibility of 2D systems
f.
ri-
s

-

e
e

t

-
r
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c
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-

s
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ne

e

s
s
he

P52S ]F

]SD
N,T

52NS ] f

]SD
N,T

5n2
] f

]n
, ~21!

1

x
5nS ]P

]n D
T

52n2
] f

]n
1n3

]2f

]n2
, ~22!

Eq. ~20! can be rewritten as

dFL,R5
SP

n
dnL,R1

S

n2 S 1

2x
2PD dnL,R

2 . ~23!

So, the total change in the free energy of the membr
per unit area is

dF

S
5

dFL1dFR

S
5

P

n
~nL1nR22n!1

1

n2 S 1

2x
2PD

3@~nL2n!21~nR2n!2#. ~24!

In the case of cylindrical geometry, keeping only terms
to second order in the curvatureRc

21 , we have

nL,R5
Rc

Rc6h/2
n.S 17

h

2Rc
1

h2

4Rc
2D n. ~25!

Substituting Eq.~25! into Eq. ~24!, we get

dFcyl

S
5

1

4x
h2Rc

22 . ~26!

Similarly, in the case of spherical geometry we have

nL,R5S Rc

Rc6h/2D
2

n.S 17
h

Rc
1

3h2

4Rc
2D n ~27!

and

dFsphere

S
5S 1

x
2

P

2 Dh2Rc
22 . ~28!

Comparing Eqs.~26! and ~28! with Eqs. ~2! and ~3!, we
obtain general expressions for the electrostatic contribu
to the bending rigidity,

kel5
h2

2x
, kG,el52

h2P

2
. ~29!

For example, in the case of low surface charge density,
DH approximation can be used to get@2#

f ~n,T!52p
s2

D
n21r s , ~30!

from which we can easily get a generalization of Eq.~6! for
a ‘‘thick’’ membrane (h@r s),

kDH52p
s2

D
h2r s , kG,DH52

1

2
kDH . ~31!



y
ac
su

L

tiv
d
le
o

gi

iva
a

em
h
r
W

n’
th
ss
th

g

o
a

-
.

ne
e

in

m

e-
s a
itz
xi-
e

lec-

he

in-

ll

he
fer-
ur-
nce

,

er

of
se

7036 PRE 60T. T. NGUYEN, I. ROUZINA, AND B. I. SHKLOVSKII
In the case of high surface charge density that we stud
this paper, a SCL of multivalent counterions resides on e
surface of the membrane. The expressions for the pres
and the compressibility given by Eqs.~17! and ~18! can be
used to calculate the bending rigidity,

kSCL5
nh2

2
kBT~20.83G10.33G1/410.87!, ~32!

kG,SCL52
nh2

2
kBT~20.55G10.27G1/410.87!. ~33!

In the limit of a strongly charged surface (G@1), the first
term in Eqs.~32! and~33! dominates, the free energy of SC
is close to that of the WC. Using Eq.~10! one arrives at Eq.
~11! for the bending rigidity in the WC limit.

As already stated in Sec. I, forG.3, Eqs.~32! and ~33!
give a negative value for the bending modulus and a posi
value for the Gaussian bending modulus. In other wor
multivalent counterions make the membrane more flexib
This conclusion is the opposite of the standard results
tained by mean field theories@Eqs.~6!, ~8!, and~31!# where
electrostatic effects are known to enhance the bending ri
ity of membranes (kel.0 and kG,el,0). Obviously, this
anomaly is related to the strong correlation between mult
lent counterions condensed on the surface of the membr
which was neglected in mean field theories.

We can also look at Eqs.~31! and ~11! from another in-
teresting perspective: apart from a numerical factor, Eq.~31!
is identical to Eq.~11! if we replacer s by 2a. So the WC of
counterions has effect on bending properties of the m
brane as if one replaces the normal 3D screening lengt
counterions gas by anegativescreening length of the orde
of lattice constant. Such negative screening length of the
or SCL was derived for the first time in Ref.@27#. It follows
from the negative compressibility predicted in Ref.@24#, and
observed in Refs.@25# and @26#.

Until now we have ignored the effects related to Poisso
ratio sP of the membrane material. We are talking about
bending induced increase of the thickness of the compre
~right! half of the membrane, simultaneous decrease of
thickness of its stretched~left! half, and the correspondin
shift of the neutral plane of the membrane~the plane which
by definition does not experience any compression
stretching! to the left from the central plane. These deform
tions can be found following Ref.@28# and lead to the addi
tional term sPh2/(12sP)Rc

2 in the right-hand side of Eq
~25!. It gives for the bending rigidity

kel5
h2

2x
1

sP

12sP

Ph2

2
. ~34!

So, for example, atsP51/3, the second term of Eq.~34!
gives a 33% correction to Eq.~11!.

According to Eqs.~29!, ~32!, and ~33! kel50 at h50.
This happens because in this limit two SCL merge into o
whose surface charge density remains unchanged after b
ing. Nevertheless, there is another effect directly related
the curvature of SCL. It can be explained by concentrat
on one curved Wigner-Seitz cell@see Fig. 1~b!#. One can see
that, due to the curvature, points of the background co
in
h
re

e
s,
.

b-

d-

-
ne,

-
of

C

s
e
ed
e

r
-

,
nd-
to
g

e

closer to the central counterion of the cell in the thre
dimensional space where Coulomb interaction operates. A
result, the energy of SCL goes down. In the Wigner-Se
approximation, where energy per ion of the WC is appro
mated by its interaction with the Wigner-Seitz cell of th
background charge, we obtain

kWC
thin.20.006

s2a3

D
, kG,WC

thin 52
2

3
kWC

thin . ~35!

We see that this effect also gives anomalous signs for e
trostatic contribution to rigidity in the WC limit, but with a
very small numerical coefficient. Also note that, as in t
thick membrane case, we can obtain Eq.~35! for a thin mem-
brane by replacingr s in Eq. ~6! by a negative screening
radius of the WC with absolute value of the ordera.

IV. CYLINDRICAL POLYELECTROLYTES

In this section, we study the bending properties of cyl
drical polyelectrolytes with diameterd and linear charge
densityh ~see Fig. 2!. As in the membrane problem, we wi
assume that the cylinder is thick, i.e., its circumferencepd is
much larger than the average distancea between counterions
on it surface. The calculation is carried out exactly in t
same way as in the case of thick membrane. The only dif
ence is that, instead of summing the free energy of two s
faces of the membrane, we average over the circumfere
of the cylinder.

Let us denote bynf the local density at an anglef on the
circumference on the cylinder@see Fig. 2~a!#. Before bending
nf5n5h/pdZe, after bending it changes to a new value

nf5n
Rc

Rc2~d/2!cosf
.nS 11

dcosf

2Rc
1

d2cos2f

4Rc
2 D .

~36!

Using Eq.~24! the free energy per unit length of the polym
can be written as

FIG. 2. Bending of cylindrical polyelectrolytes.~a! A thick cyl-
inder. Rigidity is mostly determined by the change in density
SCL. ~b! A thin cylinder. The curvature effect is the dominant cau
of change in free energy.
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dF

L 5E
0

2pd

2
dfS P

n
~nf2n!1

1

n2 S 1

2x
2PD ~nf2n!2D

5
p

2x S d

2D 3

Rc
22 , ~37!

where we keep terms up to second order in the curva
Rc

21 .
Comparing Eq.~37! with Eqs.~4! and~5!, one can easily

calculate the electrostatic contribution to the persiste
length

Lel5
p

xkBT S d

2D 3

. ~38!

In the case of a highly charged polymer, a SCL of counte
ons resides on the polymer surface. For a thick cylinder,
SCL is locally flat and we can use the numerical express
~18! for x21 to obtain

LSCL5
p

8
nd3~20.83G10.33G1/410.87!. ~39!

Again, we see that correlations between counterions
the surface of a polymer lead to a negative electric contri
tion to persistence length forG.1.5. In the WC limit G
@1, the first term in Eq.~39! dominates, and using Eq.~10!
one can easily obtain Eq.~12!.

As in the membrane case, for simplicity, in writing Eq
~36!, we have ignored the effect of finite value of the Po
son’s ratio of the polymer material. In membranes, this eff
results in a gain in energy due to the shift of the neutral pl
toward the convex~stretched! sides. For a cylinder, there i
an additional expansion in they direction ~Fig. 2! that re-
duces the change in surface charge density, hence com
sates for the above gain. These deformations can be fo
following Ref. @28# and lead to a correction to Eqs.~36!,

nf5nS 11
d cosf

2Rc
~12sP!1

d2cos2f

4Rc
2 S 12

sP

2
1sP

2 D
2

d2sP
2

8Rc
2 ~12cos2f!D . ~40!

This gives, for the persistence length,

Lel5
p

kBT S d

2D 3S 1

x
~12sP!21P~3sP2sP

2 ! D . ~41!

Obviously, due to the expansion iny direction, the correc-
tion to energy is not as strong as in the membrane case
example, atsP51/3, Eq. ~41! gives only 3% correction to
Eq. ~12!.

According to Eqs.~39! and~12!, atd50, kel vanishes. In
this limit, we have to directly include the curvature effect
one dimensional SCL, as shown in Fig. 2~b!. As already
mentioned in the previous section, after bending, points o
Wigner-Seitz cell come closer to the central ion, which lo
ers the energy of the system. This effect can be calcula
re
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easily in the WC limit. Let us consider the electron at t
origin; its energy can be written as

«5(
i

Z2e2

Dr i
2E

2L

L

ds
Zeh

Ds
, ~42!

wherer i5 ia ands is the contour distance from our ion to a
lattice pointi and the elementds of the background charge
In the straight rod configuration the space distant is the sa
as the contour distance; however, after bending they cha
to

r i8.r i~12r i
2/24Rc

2!, s8.s~12s2/24Rc
2!. ~43!

Using these new distances to calculate the energy of the
rod and subtract Eq.~42! from it, one can easily calculate th
change in energy due to curvature and the correspon
contribution to persistence length:

LWC
thin52

l

96
, ~44!

which is negative and very small. For example, forZ53, 4,
LWC

thin520.065 and20.116 nm, respectively.

V. CONTRIBUTIONS OF THE TAIL OF THE SCREENING
ATMOSPHERE

In preceding sections, we calculated the contribution o
SCL of counterions that is condensed on the surface o
membrane or polyelectrolyte to their bending rigidity. W
assumed that charge densitys is totally compensated by th
concentrationn5s/Ze. Actually, for example, for a mem-
brane, some concentration,N(x), of counterions is distrib-
uted at a distancex from the surface in the bulk of solution
~we call it the tail of the screening atmosphere!.

The standard solution of PB equation for concentrat
N(x) at N(`)50 has a form

N~x!5
1

2p l

1

~l1x!2 , ~45!

where l5Ze/(2p ls) is Gouy-Chapman length. AtG@1,
correlations in SCL provide additional strong binding f
counterions, which dramatically change the form ofN(x)
@14#. It decays exponentially atl!x! l /4, and atx@ l /4 it
behaves as

N~x!5
1

2p l

1

~L1x!2 . ~46!

Here L5Ze/(2p ls* ) is an exponentially large length an
s* is the exponentially small uncompensated surface cha
density at the distance; l /4. In any realistic situation when
N(`) is finite or a monovalent salt is added to the solutio
Eqs.~45! and~46! should be truncated at the screening rad
r s . Then the solution of the standard PB equation gives@3#
Eq. ~8! at r s@l or Eq. ~6! at r s!l. In the case of SCL, for
realistic values ofr s in the rangel /4,r s!L, we obtain a
contribution of the tail similar to Eq.~6!,
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k t53p
~s* !2r s

3

D
. ~47!

At reasonable values ofr s , this expression is much smalle
thankWC due to very small values of the ratios* /s.

Now we switch to a cylindrical polyelectrolyte. In thi
case, the solution of the PB equation is known@29# to con-
firm the main features of the Onsager-Manning@30# picture
of the counterion condensation. This solution depends on
relation betweenuhu and hc5Ze/ l . In the case interesting
for us, uhu@hc , the counterion chargeuhu2hc is localized
at the cylinder surface, while the chargehc is spread in the
bulk of the solution. This means that at large distances
apparent charge density of the cylinder,ha , equals2hc and
does not depend onh. Equation~9! can actually be obtained
from Eq. ~7! by substitutinghc for h.

It is shown in Ref.@14# that atG@1, the existence of SCL
at the surface of the cylinder leads to substantial correct
to the Onsager-Manning theory. Due to additional binding
counterions by SCLuhau,uhcu and is given by the expres
sion

ha52hc

ln@N~0!/N~`!#

ln~4r s / l !
, ~48!

where N(0) is an exponentially small concentration at t
distancer> l /4 from the cylinder axis, used in Ref.@14# as a
boundary condition for PB equation atx50. Therefore, one
can obtain for the tail contribution the estimate from t
above using Eq.~9!. For Z53 and r s55 nm this givesLt
,1 nm. For DNA, this contribution is much smaller tha
LSCL.25 nm.

VI. CONCLUSION

We would like to conclude with the discussion of a
proximations used in this study. First, we assumed that
surface charges are immobile. This is true for rigid polyel
trolytes, such as double helical DNA or actin, as well as
frozen or tethered membranes. But if the membrane is fl
its charged polar heads can move along the surface. In
case surface charges can accumulate near aZ-valent counter-
ion and screen it. Such screening creates short dipoles
ented perpendicular to the surface. Interaction energy
tween these dipoles is much weaker than the correla
energy of SCL. Therefore, it produces a negligible contrib
tion to the membrane rigidity. The mobility of the charge
polar heads eliminates effects of counterion correlation o
in the situation where the membrane has polar heads of
different charges, for example, neutral and negative ones
such a membrane, the local surface charge density can g
due to the increase of local concentration of negative he
But if all of the closely packed polar heads are equa
charged their motion does not lead to redistribution of
surface charges. Then our theory is valid again.
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Another approximation which we used is that the surfa
charge is uniformly smeared. This cannot be exactly t
because localized charges are always discrete. Neverth
our approximation makes sense if the surface charges
distributed evenly, and their absolute value is much sma
than the counterion charge. For example, when the sur
charged heads have charge -e and the counterion charge i
Ze@e, then the repulsion between counterions is mu
stronger than their pinning by the surface charges. AtZ>3
we seem to be close to this picture. On the other hand, if
surface charges were clustered, for example, they form c
pact triplets, the trivalent counterion would simply neutrali
such cluster, creating a small dipole. Obviously our the
would overestimate electrostatic contribution to the bend
rigidity in this case.

All calculations in this paper were done for pointlik
counterions. Actually counterions have a finite size and o
can wonder how this affects our results. Our results,
course, make sense only if the counterion diameter is sma
than the average distance between them in SCL. For a typ
surface charge density,s51.0 e/nm22, the average dis-
tance between trivalent ions is 1.7 nm, so that this condit
is easily satisfied. The most important correction to the
ergy is related to the fact that due to the ion’s finite size,
plane of the center of the counterion charge can be locate
some distance from the plane of location of the surfa
charge. This creates an additional planar capacitor at e
surface and results in a positive contribution to the bend
rigidity similar to Eq.~31! that can compensate our negati
contribution. On the other hand, if the negative ions stick
of the surface and the centers of counterions are in the s
plane with centers of negative charge this effect disappe

In the general case, one can look at this problem fr
another angle. Let us assume that the bare quantitiesk0 and
L0 are constructively defined as experimental values
tained in the limit of a high concentration of monovale
counterions. Let us also assume that the distances of clo
approach of monovalent andZ-valent counterions to the sur
face are the same. This means that the planar capacitor e
discussed above is already included in the bare quantitiek0
andL0. Then the replacement of monovalent counterions
Z-valent will always lead to Eqs.~11! and ~12!.

In summary, we have shown that condensation of mu
valent counterions on the surface of a charged membran
polyelectrolyte happens in the form of a strongly correla
Coulomb liquid, which closely resembles a Wigner cryst
Anomalous properties of this liquid lead to the observa
decrease of the bending rigidity of a membrane and polye
trolyte.
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